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Abstract—The emergence of autonomous vehicles (AVs),
which rely heavily on advanced technologies such as object
detection systems, represents a significant breakthrough in
transportation. These vehicles use object detection algo-
rithms to sense and interpret their environment, enabling
them to navigate and make decisions autonomously. There-
fore, the development and optimization of object detection
systems are essential to ensure the effectiveness and safety
of autonomous vehicle operations. In this paper, we design a
physical adversarial attack algorithm based on adversarial
patches (APs) to deceive object detectors. Instead of using
colored APs, our APs are monochrome, which makes it
easier to implement on the road. In addition, to increase
the robustness of the APs, we consider the Expectation Over
Transformation (EOT) technique. Our experimental results
show that our simple patches can effectively attack YOLO-
V3, which consistently misidentifies the same object category
for three consecutive frames.

1. Introduction and Related Works

Object detection is the process of identifying semantic
objects in images or video clips, with widespread appli-
cations in areas such as face detection, object tracking,
and safety-critical tasks such as autonomous driving and
intelligent video surveillance. In particular, in autonomous
driving systems, object detectors play a critical role in
tasks such as recognizing traffic signs, pedestrians, vehi-
cles, traffic lights, and lanes. However, in recent years,
security concerns regarding object detectors have arisen
due to the vulnerability of deep neural networks (DNNs)
to adversarial examples (AEs). These are carefully crafted
malicious inputs that can fool DNNs into making in-
correct predictions. Early research focused primarily on
studying adversarial examples against image classifiers in
digital spaces, which involved computing perturbations,
reintegrating them into original images, and feeding them
directly into classification systems. In a more recent de-
velopment, several studies [2]–[4] have demonstrated the
feasibility of adversarial examples (AEs) against image
classifiers in the physical world. They achieved this by
capturing images of the AEs and feeding them directly
into the classifier.

Attacking object detectors is more challenging than
attacking image classifiers, primarily because adversarial
examples (AEs) must fool both label predictions and
object existence predictions. In addition, object detectors
operate in dynamic environments where the relative po-
sitions and movements of objects and detectors are con-
stantly changing. This dynamic environment is evident in

fast-moving autonomous vehicles or surveillance systems.
Recently, there have been many efforts to attack object
detectors in the physical scenario. Most physical adversar-
ial attacks involve creating adversarial patches (APs) and
placing them on target objects to fool object detectors into
detecting them as a wrong class, e.g., [5], [6]. Their main
approach is to generate robust APs that are colorful by
extending the range of image transformation. However, the
application of colored APs on the road surface is highly
challenging.

In this paper, our goal is to create robust adversarial
patches to target state-of-the-art object detectors used in
the real world, especially when considering speeds, wide
angles, and diverse real-world scenarios. To facilitate the
application of APs on the road surface, our APs will be of
a single color for ease of implementation. Our contribu-
tions are summarized as follows: (1) We propose a novel
method for attacking object detectors with monochrome
APs. (2) We overcome several challenges such as speed
and wobble.

2. Proposed Method

2.1. Overview

Figure 1. The framework of our method.

Inspired by [1], to attack victim objects, instead of one
AP, we use several small-sized APs close to target objects.
We use the Generative Adversarial Network (GAN) to
generate APs. To achieve faster and more real-time image
acquisition, we chose the YOLOv3-tiny architecture for
our object detector. During the training process of the
GAN, we simultaneously introduce the classification loss
function corresponding to the object detector to ensure
that APs can successfully cause misclassification by the
object detector. Furthermore, we employ EOT techniques,
denoted as A(·), to increase the robustness of the APs.
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Figure 2. Visualization of 3 samples attaching APs with different angles
in the same batch.

Overall, our attack framework consists of a GAN and an
object detector, as shown in Fig. 1.

2.2. Training Generator and Attack

While training the generator, we simultaneously attack
the object detector. To attack a particular scene with N
APs, each batch of training images during GAN training
consists of consecutive frames related to that scene. We
use the generator to synthesize an AP of size k × k and
then copy N×batch size times. We show an example of a
batch of data with APs in Figure 2. We then perform EOT
on the training images of this batch along with these APs.
After the EOT is completed, we remove the backgrounds
from the APs and add N APs to each training image of
this batch. Then we compute the loss function of the GAN.
Note that the N APs in each image may have different
rotation angles.

We formalize the loss of GAN as follows:

LGAN = minGmaxDEv∼pv
[logD(v)]

+ Ez∼pz
[log(1−D(G(z)))]

+ αEz∼pz, θ∼pθ
[Lf (A(G(z), x, θ), t), ] (1)

where G and D are denoted as the generator and dis-
criminator, respectively. v and x represent the reference
and training images, respectively. z is the input to the
generator and represents random noise. θ denotes trans-
formation types, such as rotation. t denotes the target class
into which we expect the object detector to classify the
object. α controls the importance of the attack.

3. Experiments

We conducted our attack in a white-box setting, fo-
cusing on targeted attacks to evaluate the results. We
collected our own dataset of road images, consisting
of 1000 images for training and 71 images for testing.
Furthermore, we fine-tune the pre-trained object detector
(pre-trained weights are from darknet53.conv.74) on our
dataset with five labels such as person, word, mark, car,
and bicycle, respectively. Regarding APs, we select the
Four Shapes dataset1 including star, circle, square, and
triangle. To evaluate the performance of our attack, we
use two indicators: the Percentage of Wrong-Class (PWC)
and the Continuous Detection with Wrong-Class (CWC).
PWC is computed by the following equation:

PWC = number of frames are classified to the target class
total number of frames of the video × 100%.

(2)

1. https://paperswithcode.com/dataset/shapes-1

CWC indicates whether the object detector has consis-
tently misclassified the wrong object class for three con-
secutive frames.

3.1. Experiment Setup

We performed targeted attacks in a white-box setting,
where the attackers had access to all parameters of the
object detector. For the coefficients of Lf we set α = 0.5.
For training the GAN, we choose Adam as the optimizer
and set the batch size, learning rate, and epochs to 18,
10−4, and 800. Regarding the APs, we choose star-shaped
ones because we found that APs with more angles give
better attack results.

3.2. Experiment Results

We evaluate our attack on two different scenes: one is
in a simulated environment, and another is in an under-
ground parking lot. We use N = 4 and k = 60. Table 1
shows that our attack can overcome most challenges where
PWCs are higher than 60%, and achieve CWCs except
for the high speed in a simulated environment. We take
screenshots from videos to show our simulated scenario.

Rotation Speed Angles

fix slight rotation slow normal fast −15◦ 0 +15◦

PWC 100% 100% 100% 87% 40% 64% 87% 68%
CWC ✓ ✓ ✓ ✓ × ✓ ✓ ✓

TABLE 1. COMPARISON OF THE RESULTS UNDER THREE
CHALLENGES IN SIMULATING A REAL-WORLD ENVIRONMENT.

We run our attack in the real world with N = 6 and
k = 60. As the scenario shifts to a real-world environ-
ment, the effectiveness of the attack decreases somewhat.
However, we can still obtain CWCs in most settings.

Rotation Speed Angles

fix slight rotation slow normal fast −15◦ 0◦ +15◦

PWC 92% 80% 76% 44% 20% 26% 44% 28%
CWC ✓ ✓ ✓ ✓ × × ✓ ×

TABLE 2. COMPARISON OF THE RESULTS UNDER THREE
CHALLENGES IN A REAL-WORLD ENVIRONMENT.
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